Abstract

Several mechanisms have been proposed for the opening of the South China Sea. Here, we use SKS splitting analysis to investigate the mantle flow surrounding the South China Sea. We use a total of 23 seismic stations and 87 events. We applied spectral analysis and cluster analysis to find a stable splitting solution for each event. The main conclusions are: (1) In northern Vietnam, the NW–SE fast direction is parallel to the absolute plate motion as well as GPS observations with splitting times larger than 1 s, indicating a coupled lithosphere and mantle. In contrast, in southern Vietnam, the NE–SW fast direction suggests that the lithosphere and asthenosphere are decoupled. (2) The fast directions beneath the South China Block and central Taiwan are NE–SW and NS respectively, both parallel to surface deformations with splitting times greater than 1 s, indicating that mantle flow and surface deformation are related. (3) The observed NW–SE fast directions beneath Hainan Island reflect the India–Eurasia collision, and show no signatures of an upwelling mantle plume directly underneath Hainan Island. This implies that Hainan Island is tectonically closely related to the Red River Fault, not the South China Block. (4) In Borneo, the observed NE-SW direction is parallel to the Palawan Trench, consistent with flow associated with the inactive proto-South China Sea subduction system. The SKS splitting observations surrounding South China Sea cannot be explained by a single geologic process, with either the collision-driven extrusion model or the slab pull model fitting the data presented here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call