Abstract
AbstractSeismic anisotropy constitutes a useful tool for imaging the structure along the plate interface in subduction zones, but the seismic properties of mafic blueschists, a common rock type in subduction zones, remain poorly constrained. We applied the technique of electron backscatter diffraction (EBSD) based petrofabric analysis to calculate the seismic anisotropies of 14 naturally deformed mafic blueschists at dry, ambient conditions. The ductilely deformed blueschists were collected from terranes with inferred peak P‐T conditions applicable to subducting slabs at or near the plate interface in active subduction zones. Epidote blueschists display the greatest P wave anisotropy range (AVp ∼7%–20%), while lawsonite blueschist AVp ranges from ∼2% to 10%. S wave anisotropies generate shear wave splitting delay times up to ∼0.1 s over a thickness of 5 km. AVp magnitude increases with glaucophane abundance (from areal EBSD measurements), decreases with increasing epidote or lawsonite abundance, and is enhanced by glaucophane crystallographic preferred orientation (CPO) strength. Two‐phase rock recipe models provide further evidence of the primary role of glaucophane, epidote, and lawsonite in generating blueschist seismic anisotropy. The symmetry of P wave velocity patterns reflects the deformation‐induced CPO type in glaucophane—an effect previously observed for hornblende on amphibolite P wave anisotropy. The distinctive seismic properties that distinguish blueschist from other subduction zone rock types and the strong correlation between anisotropy magnitude/symmetry and glaucophane CPO suggest that seismic anisotropy may be a useful tool in mapping the extent and deformation of blueschists along the interface, and the blueschist‐eclogite transition in active subduction zones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.