Abstract

The thickness and internal properties of the magma sill located at the top of the axial magma chamber (AMC) along the southern East Pacific Rise (EPR) have been investigated through a combination of waveform modeling the near‐vertical incidence reflections from this body and analysis of reflection amplitude variation as a function of source‐receiver offset (or slowness). Our results show that the AMC reflector observed along the southern EPR is best modeled by a thin (<100 m thick) sill of partial melt (Vs ≠ 0 km/s) sandwiched between higher‐velocity material, and that the thickest sills are generally associated with the lowest P and S wave velocities. The comparatively high P wave velocities and nonzero shear wave velocities inferred for this sill indicate that it is filled with partially molten magma which in some locations has a high crystal content. This may have important implications for eruption mechanisms and along‐axis mixing of magma at the EPR. There is no simple relationship between morphologic indicators of magma supply (e.g., axial depth or volume) and sill thickness, depth, or velocity. Magma sill properties may be closely tied to the eruption and replenishment cycle of the AMC and thus may vary on a much shorter spatial and temporal scale than axial morphology, which reflects longer‐term variations in magma supply to the ridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.