Abstract

AbstractThe 18 March 2020 Mw 5.7 Magna earthquake near Salt Lake City, Utah, offers a rare glimpse into the subsurface geometry of the Wasatch fault system—one of the world's longest active normal faults and a major source of seismic hazard in northern Utah. We analyze the Magna earthquake sequence and resolve oblique‐normal slip on a shallow (30–35°) west‐dipping fault at ~9‐ to 12‐km depth. Combined with near‐surface geological observations of steep dip (~70°), our results support a curved, or listric, fault shape. High‐precision aftershock locations show the activation of multiple, low‐angle (<30–35°) structures, indicating the existence of a complicated fault system. Our observations constrain the deep structure of the Wasatch fault system and suggest that ground shaking in the Salt Lake City region in future Wasatch fault earthquakes may be higher than previously estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.