Abstract

A seismic analysis of ground-supported, three-dimensional (3-D) rigid-base steel cylindrical liquid storage tank is investigated, using a coupled acoustic-structural finite element (FE) method for fluid-structure interaction (FSI). In this method, the contained liquid in the tank is modelled using acoustic elements and the cylindrical tank is modelled using shell elements. The impulsive and convective terms are estimated separately by using the appropriate boundary conditions on the free surface of the liquid. The convergence and validation studies of the proposed FE model are conducted by comparing the results reported in the literature. The parametric studies are performed for rigid and flexible tanks for the varying slenderness of the open roof tanks. The sloshing displacement and base shear time history responses are evaluated for the 3-D tanks subjected to harmonic unidirectional ground motions. Further, the results are compared with the commonly used two and three lumped-mass models of the tank. Moreover, the seismic response quantities of the tank subjected simultaneously to the bi-directional horizontal components of earthquake ground motion are also investigated using the 3-D FE model, and the response quantities are compared with the lumped-mass models. The results obtained from the 3-D FE model and lumped-mass model are in close agreement. The average percentage difference in the 3-D FE and lumped-mass models for maximum sloshing displacement prediction is 15 percent to 20 percent and that for the base shear is about 4 to 10 percent, in the case of the uni-directional harmonic ground motions. It is concluded that the sloshing displacement is not affected by the tank flexibility, but the impulsive hydrodynamic pressure and the impulsive component of the base shear increases with the tank flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.