Abstract

In the present Era escalation of multi-storey high rise building is very common because of rapid urbanization in the entire world also innovation in the field of Engineering, science and Technology. Also Engineers have sophisticated designing software. As height of the building increases building response to the wind and seismic load increases. It means that forces and displacement of the structure is directly proportional to the height of the structure. Many research studiesare going on to reduce the structural instability due to high speed winds and earthquakes. During the earthquake the multi-storey high rise structures are failed to resist the seismic loads and it become the catastrophic disaster for human life’s and for the country. It is most important that structure should be able to withstand against external excitation forces. This can be achieved by building structure more flexible.During the time of earthquake multi-storey structures are swing and large deformation is occurred and vibrations are transferred in the structure through the ground which causes instability in structure. Thus the use of damper is resists lateral forces (wind load, earthquake load) and providing stability to the structure. Dampers are the mechanical devices which dissipate energy which is facilitate in multi-storey structure to reduce the displacement, buckling of beams and columns and increases the structural stiffness. There is lot of various types of dampers are used in RC multi-storey building. This study deals with performance and selection of suitable type of damper which will be more resistant to earthquake for the selected multi-storey building and different seismic parameters like time period, story stiffness, story displacement, story drift and base shear are checked out. In this study seismic behavior of multi-story RCC building with various types of dampers like fluid viscous damper, friction damper and tuned mass damper is carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.