Abstract

AbstractThe critical zone sustains terrestrial life, but we have few tools to explore it efficiently beyond the first few meters of the subsurface. Using analyses of high‐frequency ambient seismic noise from densely spaced seismometers deployed in the forested Shale Hills subcatchment of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO), we show that temporal changes in seismic velocities at depths from ∼1 m to tens of m can be detected. These changes are driven by variations at the land surface. The Moving‐Window Cross‐Spectral (MWCS) method was employed to measure seismic‐velocity changes in coda waves at hourly resolution in 10 different frequency bands. We observed a diurnal signal, a seasonal signal, and a meteorological‐event‐based signal. These signals were compared to time‐series measurements of precipitation, well water levels, soil moisture, soil temperature, air temperature, latent heat flux, and air pressure in the heavily instrumented catchment. Most of the velocity changes can be explained by variations in temperature that result in thermoelastic strains that propagate to depth. But some double minima in seismic velocity time‐series observed after large rain events were attributed in part to the effects of water infiltration. These results show that high‐frequency ambient noise data may in some locations be used to detect changes in the critical zone from ∼1 to ∼100 m or greater depth with hourly resolution. But interpretation of such data requires multiple environmental data sets to deconvolve the complex interrelationships among thermoelastic and hydrological effects in the subsurface critical zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call