Abstract
We develop a diagrammatic calculus for representations of unrolled quantum sl2 at a fourth root of unity. This allows us to prove Seifert-Torres type formulas for certain splice links using quantum algebraic methods, rather than topological methods. Other applications of this diagrammatic calculus given here are a skein relation for n-cabled double crossings and a simple proof that the quantum invariant associated with these representations determines the multivariable Alexander polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Topology and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.