Abstract
We consider the question of how many essential Seifert Klein bottles with common boundary slope a knot in S^3 can bound, up to ambient isotopy. We prove that any hyperbolic knot in S^3 bounds at most six Seifert Klein bottles with a given boundary slope. The Seifert Klein bottles in a minimal projection of hyperbolic pretzel knots of length 3 are shown to be unique and pi_1-injective, with surgery along their boundary slope producing irreducible toroidal manifolds. The cable knots which bound essential Seifert Klein bottles are classified; their Seifert Klein bottles are shown to be non-pi_1-injective, and unique in the case of torus knots. For satellite knots we show that, in general, there is no upper bound for the number of distinct Seifert Klein bottles a knot can bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.