Abstract
We provide a new approach to study the noncommutative effects on the neutral Dirac particle with anomalous magnetic or electric dipole moment on the noncommutative plane. The advantages of this approach are demonstrated by investigating the noncommutative corrections on the Aharonov-Casher and He-McKellar-Wilkens effects. This approach is based on the effective $U(1)$ gauge symmetry for the electrodynamics of spin on the two dimensional space. The Seiberg-Witten map for this symmetry is then employed when we study the noncommutative corrections. Because the Seiberg-Witten map preserves the gauge symmetry, the noncommutative corrections can be defined consistently with the ordinary phases. Based on this approach we find the noncommutative corrections on the Aharonov-Casher and He-McKellar-Wilkens phases consist of two terms. The first one depends on the beam particle velocity and consistence with the previous results. However the second term is velocity-independent and then completely new. Therefore our results indicate it is possible to investigate the noncommutative space by using ultra-cold neutron interferometer in which the velocity-dependent term is negligible. Furthermore, both these two terms are proportional to the ratio between the noncommutative parameter $\theta$ and the cross section $A_{e/m}$ of the electrical/magnetic charged line enclosed by the trajectory of beam particles. Therefore the experimental sensitivity can be significantly enhanced by reduce the cross section of the charge line $A_{e/m}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.