Abstract
Seiberg-Witten geometry of mass deformed $\mathcal N=2$ superconformal ADE quiver gauge theories in four dimensions is determined. We solve the limit shape equations derived from the gauge theory and identify the space $\mathfrak M$ of vacua of the theory with the moduli space of the genus zero holomorphic (quasi)maps to the moduli space ${\rm Bun}_{\mathbf G} (\mathcal E)$ of holomorphic $G^{\mathbb C}$-bundles on a (possibly degenerate) elliptic curve $\mathcal E$ defined in terms of the microscopic gauge couplings, for the corresponding simple ADE Lie group $G$. The integrable systems $\mathfrak P$ underlying the special geometry of $\mathfrak M$ are identified. The moduli spaces of framed $G$-instantons on ${\mathbb R}^{2} \times {\mathbb T}^{2}$, of $G$-monopoles with singularities on ${\mathbb R}^{2} \times {\mathbb S}^{1}$, the Hitchin systems on curves with punctures, as well as various spin chains play an important role in our story. We also comment on the higher-dimensional theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.