Abstract

Conventional X-ray powder diffraction analyses of aluminum-substituted lithium nickel oxides showed pronounced broadening of the (11l) type peaks with increasing aluminum concentrations. It was postulated that a segregation tendency of nickel and aluminum in the layered lithium nickel oxide structure could lead to anisotropic strains and size effects for the (110) type planes and thus pronounced broadening. Variation in the distribution of aluminum and nickel was detected among different crystals by energy-dispersive X-ray spectroscopy (EDX) and within individual crystals at the nanometer-scale by electron energy loss spectroscopy (EELS). Synchrotron X-ray powder diffraction analyses of the “LiNi1−yAlyO2” (0.10 ≤ y ≤ 0.50) samples revealed that strains in the (110) planes continuously increased with the aluminum concentration, which was then confirmed by convergent beam and selected area electron diffraction studies. Therefore, a combination of synchrotron X-ray powder diffraction, electron diffraction, E...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.