Abstract

Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call