Abstract
A preparation of rat liver microsomes containing 70% of the total cellular endoplasmic reticulum (ER) membranes was subfractionated by isopycnic density centrifugation. Twelve subfractions of different ribosome content ranging in density from 1.06 to 1.29 were obtained and analyzed with respect to marker enzymes, RNA, and protein content, as well as the capacity of these membranes to bind 80S ribosomes in vitro. After removal of native polysomes from these microsomal subfractions by puromycin in a buffer of high ionic strength their capacity to rebind 80S ribosomes approached levels found in the corresponding native membranes before ribosome stripping. This indicates that in vitro rebinding of ribosomes occurs to the same sites occupied in the cell by membrane-bound polysomes. Microsomes in the microsomal subfractions were also tested for their capacity to effect the translocation of nascent secretory proteins into the microsomal lumen utilizing a rabbit reticulocyte translation system programmed with mRNA coding for the precursor of human placental lactogen. Membranes from microsomes with the higher isopycnic density and a high ribosome content showed the highest translocation activity, whereas membranes derived from smooth microsomes had only a very low translocation activity. These results indicate the membranes of the rough and smooth portions of the endoplasmic reticulum are functionally differentiated so that sites for ribosome binding and the translocation of nascent polypeptides are segregated to the rough domain of the organelle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.