Abstract

Following irradiation p53-function-deficient tumour cells undergo mitotic catastrophe and form endopolyploid cells. A small proportion of these segregates nuclei, and give rise to viable descendants. Here we studied this process in five tumour cell lines. After mitotic failure, tumour cells enter the endocycle and form mono-nucleated or multi-nucleated giant cells (MOGC and MNGC). MNGC arise from arrested anaphases, MOGC, from arrested metaphases. In both cases the individual genomes establish a radial pattern by links to a single microtubule organizing centre. Segregation of genomes is also ordered. MNGC present features of mitosis being resumed from late anaphase. In MOGC the sub-nuclei retain arrangement of stacked metaphase plates and are separated by folds of the nuclear envelope. Mitosis then resumes in sub-nuclei directly from metaphase. The data presented indicate that endopolyploid tumour cells preserve the integrity of individual genomes and can potentially re-initiate mitosis from the point at which it was interrupted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.