Abstract
G protein-coupled receptors (GPCRs) transduce many important physiological signals and are targets for a large fraction of therapeutic drugs. Members of the largest family of GPCRs (family A) are thought to self-associate as dimers and higher-order oligomers, although the significance of such quaternary structures for signaling or receptor trafficking is known for only a few examples. One outstanding question is the physical stability of family A oligomers in cell membranes. Stable oligomers would be expected to move through cellular compartments and membrane domains as intact groups of protomers. Here, we test this prediction by recruiting subsets of affinity-tagged family A protomers into artificial microdomains on the surface of living cells and asking if untagged protomers move into these domains (are corecruited) at the same time. We find that tagged β₂ adrenergic and μ-opioid protomers are unable to corecruit untagged protomers into microdomains. In contrast, tagged metabotropic glutamate receptor protomers do corecruit untagged protomers into such microdomains, which is consistent with the known covalent mechanism whereby these family C receptors dimerize. These observations suggest that interactions between these family A protomers are too weak to directly influence subcellular location, and that mechanisms that move these receptors between subcellular compartments and domains must operate on individual protomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.