Abstract

Small additions of B, P, and C can result in dramatic changes in the mechanical performance and welding behavior of Inconel 718. Although additions of B and P improve the mechanical properties, they have a detrimental effect on weldability. Adding C mitigates the negative effect on welding while retaining the improvements in mechanical performance. In this study, precise observations of the segregation of B, P, and C to the grain boundaries are made using site-specific atom probe tomography and NanoSIMS. Changes in the segregation behavior provide a quantitative explanation for the welding response, where hot cracking is attributed to the formation of a eutectic film. Calculations of the relative positions of the B, P, and C revealed that these atoms were less likely to cluster together in the presence of C, providing insight into the likely mechanisms behind the segregation behavior in this complex, multicomponent alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.