Abstract

An attempt was made to determine the inheritance of the rye genes which induce high chiasma frequency in hybrids with wheat and to study if the ability of rye to induce partial amphiploidy in hybrids with wheat was heritable. Five to eight F2 pollen plants were derived from seeds taken from each of three F1 plants that had given high chiasma frequency in hybrids with 'Chinese Spring' wheat in earlier studies. Similarly, six to seven F2 pollen plants were derived from each of three F1 plants that had given partial amphiploids in hybrids with 'Chinese Spring' wheat in earlier studies. Chiasma frequency was studied in 127 hybrids with 'Chinese Spring' wheat. In the present study, significant differences in chiasma frequency were observed (i) among the 38 families represented by 127 plants, and (ii) between two groups of three sets each, one known for inducing high pairing and the other known for inducing partial amphiploidy associated with low pairing in wheat × F1 rye plants. Significant variation was also observed between families within sets (each originated from one F1 rye plant) suggesting that F2 rye plants derived from the same F1 plants also differed genetically for inducing heterogenetic (homoeologous) pairing in wheat × rye hybrids. One of the six sets particularly showed significantly higher pairing with a mean of 2.13 per cell (individual hybrids gave a chiasma frequency as high as a mean of 6.07 per cell) as against a range of 0.96 to 1.18 in the remaining five sets, suggesting accumulation of genes in F2 rye plants for inducing pairing in wheat × rye hybrids. It is expected that by intermating the segregating rye plants, it should be possible to accumulate genes and eventually to isolate homozygous lines inducing high pairing in hybrids with wheat. Contrary to expectation, no partial amphiploids were obtained in a study of 127 wheat × F2 rye hybrids, although three of the six F1 rye plants had earlier given partial amphiploids in wheat × F1 rye hybrids. Key words: intergeneric hybrids, wheat, rye, genetic control, chromosome pairing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call