Abstract

Molecular segregation in methanol-water mixtures is studied across a wide concentration range as a function of temperature and pressure. Cluster distributions obtained from both neutron diffraction and molecular dynamics simulations point to significantly enhanced segregation as the mixtures are cooled or compressed. This evolution toward greater molecular heterogenity in the mixture accounts for the observed changes in the water-water radial distribution function and there are indications also of a change in the topology of the water clusters. The observed behavior is consistent with an approach to an upper critical solution point. Such a point would appear to be "hidden" below the freezing line, thereby precluding observation of the two-fluid region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.