Abstract

A sample of nitrogen-doped, single crystal Czochralski silicon was subjected to several different surface preparations. Secondary ion mass spectrometry depth profiling has shown that prolonged glancing-angle bombardment by 3–5kV Ar+ ions significantly increases the nitrogen concentration in the near surface by up to an order of magnitude over the bulk value. Concentrations are observed to be elevated over the bulk value to a depth up to 25μm. Nitrogen-implanted samples and samples with a 1nm surface nitride did not exhibit nitrogen segregation under the same conditions, but a sample with 100nm of surface nitride did exhibit ion bombardment induced drive-in. In nitride-free samples, the source of the nitrogen is indicated to be a nitrogen-rich layer in the first micron of material. The diffusion behavior of nitrogen in silicon is discussed and the Crowdion mechanism for diffusion is suggested as the enabling mechanism for the enhanced low temperature diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call