Abstract

Small-scale mechanics of solute atom segregation and incipient plasticity in nanotwinned Ag containing trace concentrations of Cu were studied by using large-scale hybrid Monte Carlo and molecular-dynamic simulations. It is found that solute Cu atoms are segregated concurrently to grain boundaries and intrinsic twin-boundary kink-step defects during thermal annealing. Low Cu dopant contents below 1 at. % are predicted to substantially increase twin stability in nanotwinned Ag, accompanied with a pronounced rise in yield strength at 300 K. Incipient plasticity is associated with kink-step migration, grain-boundary sliding, and dislocation nucleation from grain boundaries and twin-boundary defects, which are affected by doping. Cu-dependent yield strengthening in doped nanotwinned Ag is shown to correlate with the critical stress required to initiate crystal slip emitted from grain boundaries and twin-boundary defects. These findings provide fundamental insight into the roles of twin-boundary imperfections on plastic yielding, and offer clues to further extend the extraordinary stability and strength of nanotwinned metals by microalloying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call