Abstract
SummaryIn this work, we propose Runge–Kutta time integration schemes for the incompressible Navier–Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. The segregated Runge–Kutta methods are motivated as an implicit–explicit Runge–Kutta time integration of the projected Navier–Stokes system onto the discrete divergence‐free space, and its re‐statement in a velocity–pressure setting using a discrete pressure Poisson equation. We have analysed the preservation of the discrete divergence constraint for segregated Runge–Kutta methods and their relation (in their fully explicit version) with existing half‐explicit methods. We have performed a detailed numerical experimentation for a wide set of schemes (from first to third order), including implicit and IMEX integration of viscous and convective terms, for incompressible laminar and turbulent flows. Further, segregated Runge–Kutta schemes with adaptive time stepping are proposed. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.