Abstract

We propose a novel algorithm for segmenting multiple motions of different types from point correspondences in multiple affine or perspective views. Since point trajectories associated with different motions live in different manifolds, traditional approaches deal with only one manifold type: linear subspaces for affine views, and homographic, bilinear and trilinear varieties for two and three perspective views. As real motion sequences contain motions of different types, we cast motion segmentation as a problem of clustering manifolds of different types. Rather than explicitly modeling each manifold as a linear, bilinear or multilinear variety, we use nonlinear dimensionality reduction to learn a low-dimensional representation of the union of all manifolds. We show that for a union of separated manifolds, the LLE algorithm computes a matrix whose null space contains vectors giving the segmentation of the data. An analysis of the variance of these vectors allows us to distinguish them from other vectors in the null space. This leads to a new algorithm for clustering both linear and nonlinear manifolds. Although this algorithm is theoretically designed for separated manifolds, our experiments demonstrate its performance on real data where this assumption does not hold. We test our algorithm on the Hopkins 155 motion segmentation database and achieve an average classification error of 4.8%, which compares favorably against state-of-the art multiframe motion segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.