Abstract
This paper describes the development of a Human Activity Recognition and Segmentation (HARS) system based on Hidden Markov Models (HMMs). This system uses inertial signals from a smartphone to recognize and segment six different physical activities: walking, walking-upstairs, walking-downstairs, sitting, standing and lying down. All the experiments have been done using a publicly available dataset called UCI Human Activity Recognition Using Smartphones. The developed system improves the results obtained on this dataset in previous works. The main contribution of this paper is the incorporation of an Activity Sequence Model. The best results show an Activity Segmentation Error Rate of 2.1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.