Abstract

Purpose:The aim of this study was to determine the alteration in ganglion cell complex and its relationship with retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) in pituitary adenoma cases and also its correlation with visual field (VF).Methods:This is a prospective comparative study wherein detailed neuro-ophthalmic examination including perimetry, RNFL and ganglion cell layer inner plexiform layer (GCL-IPL) thickness were measured preoperatively in the cases of pituitary adenoma with chiasmal compression with visual symptoms and field changes who were planned for neuro-surgical intervention. These parameters were repeated 1 year after the surgery. GCL-IPL, RNFL parameters were compared with controls and were correlated with VF mean deviation (MD). The diagnostic power of GCL-IPL was tested using the receiver operating characteristic (ROC) curve. Healthy age and sex-matched controls without any ocular and systemic abnormality were taken for comparison.Results:Twenty-four patients qualified the inclusion criteria. A significant thinning of GCL-IPL (P = 0.002) and RNFL (P = 0.039) was noticed in the pituitary adenoma group. GCL-IPL (r = 0.780 P < 0.001) and RNFL (r = 0.669, P < 0.001) were significantly correlated with the MD. The ROC curve values of GCL-IPL were 0.859 (95% confidence interval 0.744% to 0.973) and of RNFL were 0.731 (95% confidence interval 0.585–0.877). The diagnostic ability of GCL-IPL was more as compared to the RNFL analysis, although it was statistically insignificant (P = 0.122).Conclusion:GCL-IPL measurements on the OCT are a sensitive tool to detect early anterior visual pathway changes in chiasmal compression for pituitary adenoma patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.