Abstract

As a noncontact and non-intrusive technique, infrared image analysis becomes promising for machinery defect diagnosis. However, the insignificant information and strong noise in infrared image limit its performance. To address this issue, this paper presents an image segmentation approach to enhance the feature extraction in infrared image analysis. A region selection criterion named dispersion degree is also formulated to discriminate fault representative regions from unrelated background information. Feature extraction and fusion methods are then applied to obtain features from selected regions for further diagnosis. Experimental studies on a rotor fault simulator demonstrate that the presented segmented feature enhancement approach outperforms the one from the original image using both Naïve Bayes classifier and support vector machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.