Abstract
Recognition of handwritten text is a useful technique that can be applied in different applications, such as signature recognition, bank check recognition, etc. However, the off-line handwritten text recognition in an unconstrained situation is still a very challenging task due to the high complexity of text strokes and image background. This paper presents a novel segmented handwritten text recognition technique that ensembles recurrent neural network (RNN) classifiers. Two RNN models are first trained that take advantage of the widely used geometrical feature and the Histogram of Oriented Gradient (HOG) feature, respectively. Given a handwritten word image, the optimal recognition result is then obtained by integrating the two trained RNN models together with a lexicon. Experiments on public datasets show the superior performance of our proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.