Abstract

In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q-dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation–conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.