Abstract

On chip caches in modern processors account for a sizable fraction of the dynamic and leakage power. Much of this power is wasted, required only because the memory cells farthest from the sense amplifiers in the cache must discharge a large capacitance on the bitlines. We reduce this capacitance by segmenting the memory cells along the bitlines, and turning off the segmenters to reduce the overall bitline capacitance. The success of this cache relies on accessing segments near the sense-amps much more often than remote segments. We show that the access pattern to the first level data and instruction cache is extremely skewed. Only a small set of cache lines are accessed frequently. We exploit this non-uniform cache access pattern by mapping the frequently accessed cache lines closer to the sense amp. These lines are isolated by segmenting circuits on the bitlines and hence dissipate lesser power when accessed. Modifications to the address decoder enable a dynamic re-mapping of cache lines to segments. In this paper, we explore the design-space of segmenting the level one data and instruction caches. Instruction and data caches show potential power savings of 10% and 6% respectively on the subset of benchmarks simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.