Abstract

Hyperspectral image (HSI) analysis often requires selecting the most informative bands instead of processing the whole data without losing the key information. Existing band reduction (BR) methods have the capability to reveal the nonlinear properties exhibited in the data but at the expense of losing its original representation. To cope with the said issue, an unsupervised non-linear segmented and non-segmented stacked denoising autoencoder (UDAE)-based BR method is proposed. Our aim is to find an optimal mapping and construct a lower-dimensional space that has a similar structure to the original data with least reconstruction error. The proposed method first confronts the original HS data into smaller regions in the spatial domain and then each region is processed by UDAE individually. This results in reduced complexity and improved efficiency of BR for classification. Our experiments on publicly available HS datasets with various types of classifiers demonstrate the effectiveness of UDAE method which equates favorably with other state-of-the-art dimensionality reduction and BR methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.