Abstract

Accurate estimation of kidney volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. Existing kidney volume estimation methods rely on an intermediate segmentation step that is subject to various limitations. In this work, we propose a segmentation-free, supervised learning approach that addresses the challenges of accurate kidney volume estimation caused by extensive variations in kidney shape, size and orientation across subjects. We develop dual regression forests to simultaneously predict the kidney area per image slice, and kidney span per image volume. We validate our method on a dataset of 45 subjects with a total of 90 kidney samples. We obtained a volume estimation accuracy higher than existing segmentation-free (by 72 %) and segmentation-based methods (by 82 %). Compared to a single regression model, the dual regression reduced the false positive area-estimates and improved volume estimation accuracy by 41 %. We also found a mean deviation of under 10 % between our estimated kidney volumes and those obtained manually by expert radiologists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.