Abstract

Image segmentation approaches typically incorporate weak regularity conditions such as boundary length or curvature terms, or use shape information. High-level information such as a desired area or volume, or a particular topology are only implicitly specified. In this paper we develop a segmentation method with explicit bounds on the segmented area. Area constraints allow for the soft selection of meaningful solutions, and can counteract the shrinking bias of length-based regularization. We analyze the intrinsic problems of convex relaxations proposed in the literature for segmentation with size constraints. Hence, we formulate the area-constrained segmentation task as a mixed integer program, propose a branch and bound method for exact minimization, and use convex relaxations to obtain the required lower energy bounds on candidate solutions. We also provide a numerical scheme to solve the convex subproblems. We demonstrate the method for segmentations of vesicles from electron tomography images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.