Abstract
AbstractAnalysis of the pathology image is important to diagnose cancer of lung, breast and stomach. Segmenting the nucleus is a key step for quantitative analysis, and has significance to the pathology researches and computer aided diagnosis systems. The inconsistency of colour, fuzzy boundary of nucleus and overlapping of cells are the universally acknowledged challenges. To solve these problems, the difference between the inside and outside of nucleus is enhanced by obtaining the distribution of the haematoxylin based on Lambert–Beer's law and the optical characteristics of stains. An inferior encoder, which is supervised by the inferior decoder, is proposed to extract the deep features of the distribution of stains. And these features are fed into the primary encoder to improve the accuracy of segmentation. To relieve the problem that some nuclei are segmented as background because the deep feature is inapparent, dynamic convolution is introduced into the encoders. The experiments show that the proposed model can segment the nucleus in the pathological images more precisely than the compared models. The Dice similarity coefficient (DSC) and panoptic quality (PQ) are 0.810 and 0.512, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.