Abstract
This paper presents an algorithm based on multi-level watershed segmentation combined with three fuzzy systems to segment a large number of myelinated nerve fibers in microscope images. The method can estimate various geometrical parameters of myelinated nerve fibers in peripheral nerves. It is expected to be a promising tool for the quantitative assessment of myelinated nerve fibers in related research. A novel multi-level watershed scheme iteratively detects pre-candidate nerve fibers. At each immersion level, watershed segmentation extracts the initial axon locations and obtains meaningful myelinated nerve fiber features. Thereafter, according to a priori characteristics of the myelinated nerve fibers, fuzzy rules reject unlikely pre-candidates and collect a set of candidates. Initial candidate boundaries are then refined by a fuzzy active contour model, which flexibly deforms contours according to the observed features of each nerve fiber. A final scan with a different set of fuzzy rules based on the a priori properties of the myelinated nerve fibers removes false detections. A particle swarm optimization method is employed to efficiently train the large number of parameters in the proposed fuzzy systems. The proposed method can automatically segment the transverse cross-sections of nerve fibers obtained from optical microscope images. Although the microscope image is usually noisy with weak or variable levels of contrast, the proposed system can handle images with a large number of myelinated nerve fibers and achieve a high fiber detection ratio. As compared to manual segmentation by experts, the proposed system achieved an average accuracy of 91% across different data sets. We developed an image segmentation system that automatically handles myelinated nerve fibers in microscope images. Experimental results showed the efficacy of this system and its superiority to other nerve fiber segmentation approaches. Moreover, the proposed method can be extended to other applications of automatic segmentation of microscopic images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.