Abstract

In this paper, multispectral image segmentation using a rough neural network based on an annealed strategy with a cooling schedule is created. The main purpose is to embed an annealed cooling schedule into the rough neural network to construct a segmentation system named annealed rough neural net (ARNN). The classification system is a paradigm for the implementation of annealed reasoning and rough systems in neural network architecture. Instead of all the information in the image are fed into the neural network, the upper- and lower-bound gray level, captured from a training vector in a multispectral image, were fed into a rough neuron in the ARNN. Therefore, only 2-channel images are selected as the training samples if an N-dimensional multispectral image was used. In the simulation results, the proposed network not only reduces the consuming time but also reserves the classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.