Abstract
To segment brain tissues in magnetic resonance images of the brain, the authors have implemented a stochastic relaxation method which utilizes partial volume analysis for every brain voxel, and operates on fully three-dimensional (3-D) data. However, there are still problems with automatically or semi-automatically segmenting thick magnetic resonance (MR) slices, particularly when trying to segment the small lesions present in MR images of multiple sclerosis patients. To improve lesion segmentation the authors have extended their method of stochastic relaxation by both pre- and post-processing the MR images. The preprocessing step involves image enhancement using homomorphic filtering to correct for nonhomogeneities in the coil and magnet. Because approximately 95% of all multiple sclerosis lesions occur in the white matter of the brain, the post-processing step involves application of morphological processing and thresholding techniques to the intermediate segmentation in order to develop a mask image containing only white matter and Multiple Sclerosis (MS) lesion. This white/lesion masked image is then segmented by again applying the authors' stochastic relaxation technique. The process has been applied to multispectral MRI scans of multiple sclerosis patients and the results compare favorably to manual segmentations of the same scans obtained independently by radiology health professionals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.