Abstract

Delineation of Organs-at-Risks (OARs) is an important step in radiotherapy treatment planning. As manual delineation is time-consuming, labor-intensive and affected by inter- and intra-observer variability, a robust and efficient automatic segmentation algorithm is highly desirable for improving the efficiency and repeatability of OARdelineation. Automatic segmentation of OARs in medical images is challenged by low contrast, various shapes and imbalanced sizes of different organs. We aim to overcome these challenges and develop a high-performance method for automatic segmentation of 10 OARs required in radiotherapy planning for braintumors. A novel two-stage segmentation framework is proposed, where a coarse and simultaneous localization of all the target organs is obtained in the first stage, and a fine segmentation is achieved for each organ, respectively, in the second stage. To deal with organs with various sizes and shapes, a stratified segmentation strategy is proposed, where a High- and Low-Resolution Residual Network (HLRNet) that consists of a multiresolution branch and a high-resolution branch is introduced to segment medium-sized organs, and a High-Resolution Residual Network (HRRNet) is used to segment small organs. In addition, a label fusion strategy is proposed to better deal with symmetric pairs of organs like the left and right cochleas and lacrimalglands. Our method was validated on the dataset of MICCAI ABCs 2020 challenge for OAR segmentation. It obtained an average Dice of 75.8% for 10 OARs, and significantly outperformed several state-of-the-art models including nnU-Net (71.6%) and FocusNet (72.4%). Our proposed HLRNet and HRRNet improved the segmentation accuracy for medium-sized and small organs, respectively. The label fusion strategy led to higher accuracy for symmetric pairs oforgans. Our proposed method is effective for the segmentation of OARs of brain tumors, with a better performance than existing methods, especially on medium-sized and small organs. It has a potential for improving the efficiency of radiotherapy planning with high segmentationaccuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call