Abstract

Intravascular ultrasound imaging of coronary arteries provides important information about coronary lumen, wall, and plaque characteristics. Quantitative studies of coronary atherosclerosis using intravascular ultrasound and manual identification of wall and plaque borders are limited by the need for observers with substantial experience and the tedious nature of manual border detection. We have developed a method for segmentation of intravascular ultrasound images that identifies the internal and external elastic laminae and the plaque-lumen interface. The border detection algorithm was evaluated in a set of 38 intravascular ultrasound images acquired from fresh cadaveric hearts using a 30 MHz imaging catheter. To assess the performance of our border detection method we compared five quantitative measures of arterial anatomy derived from computer-detected borders with measures derived from borders manually defined by expert observers. Computer-detected and observer-defined lumen areas correlated very well (r=0.96, y=1.02x+0.52), as did plaque areas (r=0.95, y=1.07x-0.48), and percent area stenosis (r=0.93, y=0.99x-1.34.) Computer-derived segmental plaque thickness measurements were highly accurate. Our knowledge-based intravascular ultrasound segmentation method shows substantial promise for the quantitative analysis of in vivo intravascular ultrasound image data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.