Abstract
The complexity of segmenting a brain tumour is critical in medical image processing. Treatment options and patient survival rates can only be improved if brain tumours can be prevented and treated. Segmentation of the brain is the most complex and time-consuming task to diagnose cancer utilizing a manual approach for numerous magnetic resonance images (MRI). The aim of MRI brain tumour image segmentation that to build an automated magnetic resonance imaging tumour segmentation system with separate the area of tumour and provided a clear boundary of the tumour region. U-Nets with different transfer learning models as backbones are presented in this paper, there are ResNet50, DenseNet169 and EfficientNet-B7. Brain lesion segmentation is performed using the multimodal brain tumor segmentation challenge 2020 dataset (BraTS2020). Based on MRI scans of the brain, the tumor segmentation technique is assessed using F1-score, Dice loss, and intersection over union score (IoU). The U-Net encoder used with EfficientNet-B7 outperforms all other architectures in terms of performance metrics across the board. Overall, the results of this experiment are rather excellent. The Dice-loss score was 0.009435, and the score of IoU was 0.7435, F1-score was 0.9848, accuracy was 0.9924, precision was 0.9829, recall was 0.9868, and specificity was 0.9943. The U-Net with EfficientNet-B7 architecture was shown to be crucial in the treatment of brain tumors, according to the findings of the experiments
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.