Abstract
Pathologists examine histology sections to make diagnostic and prognostic assessments regarding cancer based on deviations in cellular and/or glandular structures. However, these assessments are subjective and exhibit some degree of observer variability. Recent studies have shown that fractal dimension (a quantitative measure of structural complexity) has proven useful for characterizing structural deviations and exhibits great potential for automated cancer diagnosis and prognosis. Computing fractal dimension relies on accurate image segmentation to capture the architectural complexity of the histology specimen. For this purpose, previous studies have used techniques such as intensity histogram analysis and edge detection algorithms. However, care must be taken when segmenting pathologically relevant structures since improper edge detection can result in an inaccurate estimation of fractal dimension. In this study, we established a reliable method for segmenting edges from grayscale images. We used a Koch snowflake, an object of known fractal dimension, to investigate the accuracy of various edge detection algorithms and selected the most appropriate algorithm to extract the outline structures. Next, we created validation objects ranging in fractal dimension from 1.3 to 1.9 imitating the size, structural complexity, and spatial pixel intensity distribution of stained histology section images. We applied increasing intensity thresholds to the validation objects to extract the outline structures and observe the effects on the corresponding segmentation and fractal dimension. The intensity threshold yielding the maximum fractal dimension provided the most accurate fractal dimension and segmentation, indicating that this quantitative method could be used in an automated classification system for histology specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.