Abstract
An improved support vector machine (SVM) framework has been developed to segment hepatic tumor from CT data. By this method, the one-class SVM (OSVM) and two-class SVM (TSVM) are connected seamlessly by a boosting tool, to tackle the tumor segmentation via both offline and online learning. An initial tumor region was first pre-segmented by an OSVM classifier. Then the boosting tool was employed to automatically generate the negative (non-tumor) samples, according to certain criteria. The pre-segmented initial tumor region and the non-tumor samples generated were used to train a TSVM) classifier. By the trained TSVM classifier, the final tumor lesion was segmented out. Tested on 16 sets of CT abdominal scans, quantitative results suggested that the developed method achieved significantly higher segmentation accuracy than the OSVM and TSVM classifiers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.