Abstract

Coronary artery segmentation is crucial for physicians to identify and locate plaques and stenosis using coronary computed tomography angiography (CCTA). However, the low contrast of CCTA images and the intricate structures of coronary arteries make this task challenging. To address these difficulties, we propose a novel model, the DFS–PDS network. This network comprises two subnetworks: a discriminative frequency segment subnetwork (DFS) and a position domain scales subnetwork (PDS). DFS introduced a gated mechanism within the feed-forward network, leveraging the Joint Photographic Experts Group (JPEG) compression algorithm, to discriminatively determine which low- and high-frequency information of the features should be preserved for latent image segmentation. The PDS aims to learn the shape prototype by predicting the radius. Additionally, our model has the consistent ability to guarantee region and boundary features through boundary consistency loss. During training, both subnetworks are optimized jointly, and in the testing stage, the coarse segmentation and radius prediction are produced. A coronary-geometric refinement method refines the segmentation masks by leveraging the shape prior to being reconstructed from the radius map, reducing the difficulty of segmenting coronary artery structures from complex surrounding structures. The DFS–PDS network is compared with state-of-the-art (SOTA) methods on two coronary artery datasets to evaluate its performance. The experimental results demonstrate that the DFS–PDS network performs better than the SOTA models, including Vnet, nnUnet, DDT, CS2-Net, Unetr, and CAS-Net, in terms of Dice or connectivity evaluation metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.