Abstract
Abstract The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by the boundary cues, which carry geometrical constraints, with the deep supervision technique for better withstand of intrinsic speckle noise and posterior acoustic shadows in ultrasound images. The boundary regularization is denoted as deep boundary supervision (DBS) throughout this paper. The training of the ConvEDNet is further boosted with the adaptive domain transfer (ADT), which is realized with the bridge of encoder training for an edge detector on ultrasound images. Accordingly, the ADT is a two-stage of domain transfer for better landing the encoder on the ultrasound domain. The ADT can provide better network initialization than either the direct usage of pretrained model from natural images or random scratch. Based on the ADT and DBS techniques, the proposed ConvEDNet method achieves better segmentation performance compared with several classic deep learning segmentation methods on the same set of AWBUS images. The segmentation of breast anatomy may potentially assist the exclusion of false-positives for computer-aided detection to further improve the efficiency of clinical image reading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.