Abstract

Segmentation of the bone structures in computed tomography (CT) is crucial for research as it plays a substantial role in surgical planning, disease diagnosis, identification of organs and tissues, and analysis of fractures and bone densities. Manual segmentation of bones could be tedious and not suggested as there could be human bias present. In this paper, we evaluate some existing approaches for bone segmentation and present a method for segmenting bone tissues from CT images. In this approach, the CT image is first enhanced to remove the artifacts surrounding the bone. Subsequently, the image is binarized and outliers are removed to get the bone regions. The proposed method has a Dice index of 0.9321, Jaccard index (IoU) of 0.8729, a precision of 0.9004, and a recall of 0.9662.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.