Abstract

Abstract Additive manufacturing (AM) provides design flexibility and allows rapid fabrications of parts with complex geometries. The presence of internal defects, however, can lead to deficit performance of the fabricated part. X-ray Computed Tomography (XCT) is a non-destructive inspection technique often used for AM parts. Although defects within AM specimens can be identified and segmented by manually thresholding the XCT images, the process can be tedious and inefficient, and the segmentation results can be ambiguous. The variation in the shapes and appearances of defects also poses difficulty in accurately segmenting defects. This paper describes an automatic defect segmentation method using U-Net based deep convolutional neural network (CNN) architectures. Several models of U-Net variants are trained and validated on an AM XCT image dataset containing pores and cracks, achieving a best mean intersection over union (IOU) value of 0.993. Performance of various U-Net models is compared and analyzed. Specific to AM porosity segmentation with XCT images, several techniques in data augmentation and model development are introduced. This work demonstrates that U-Net can be effectively applied for automatic segmentation of AM porosity from XCT images with high accuracy. The method can potentially help improve quality control of AM parts in an industry setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.