Abstract
Medical imaging techniques currently produce 4D images that portray the dynamic behaviors and phenomena associated with internal structures. The segmentation of 4D images poses challenges different from those arising in segmenting 3D static images due to different patterns of variation of object shape and appearance in the space and time dimensions. In this paper, different network models are designed to learn the pattern of slice-to-slice change in the space and time dimensions independently. The two models then allow a gamut of strategies to actually segment the 4D image, such as segmentation following just the space or time dimension only, or following first the space dimension for one time instance and then following all time instances, or vice versa, etc. This paper investigates these strategies in the context of the obstructive sleep apnea (OSA) application and presents a unified deep learning framework to segment 4D images. Because of the sparse tubular nature of the upper airway and the surrounding low-contrast structures, inadequate contrast resolution obtainable in the magnetic resonance (MR) images leaves many challenges for effective segmentation of the dynamic airway in 4D MR images. Given that these upper airway structures are sparse, a Dice coefficient (DC) of ~0.88 for their segmentation based on our preferred strategy is similar to a DC of >0.95 for large non-sparse objects like liver, lungs, etc., constituting excellent accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.