Abstract
ABSTRACTIn brain MR images, the noise and low‐contrast significantly deteriorate the segmentation results. In this paper, we introduce a novel application of dual‐tree complex wavelet transform (DT‐CWT), and propose an automatic unsupervised segmentation method integrating DT‐CWT with self‐organizing map for brain MR images. First, a multidimensional feature vector is constructed based on the intensity, low‐frequency subband of DT‐CWT, and spatial position information. Then, a spatial constrained self‐organizing tree map (SCSOTM) is presented as the segmentation system. It adaptively captures the complicated spatial layout of the individual tissues, and overcomes the problem of overlapping gray‐scale intensities for different tissues. SCSOTM applies a dual‐thresholding method for automatic growing of the tree map, which uses the information from the high‐frequency subbands of DT‐CWT. The proposed method is validated by extensive experiments using both simulated and real T1‐weighted MR images, and compared with the state‐of‐the‐art algorithms. © 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 208–214, 2014
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Imaging Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.