Abstract
Cardiac CT is a valuable diagnostic tool in evaluating cardiovascular diseases. Accurate segmentation of the heart and its structures from cardiac CT and MRI images is essential for diagnosing functional abnormalities, treatment plans and cardiovascular diseases management. Accurate segmentation and quantitative assessments are still a challenge. Manual delineation of the heart from the scan images is labour-intensive, time-consuming, and error prone as it depends on the radiologist's experience. Thus, automated techniques are highly desirable as they can significantly improve the efficiency and accuracy of image analysis. This work addresses the above problems. A new, image-driven, fast, and fully automatic segmentation method was developed to segment the heart from CT images using a processing pipeline of adaptive median filter, multi-level thresholding, active contours, mathematical morphology, and the knowledge of human anatomy to delineate the regions of interest. The algorithm proposed is simple to implement and validate and requires no human intervention. The method is tested on the 'Image CHD' DICOM images (multi-centre, clinically approved single-phase de-identified images), and the results obtained were validated against the ground truths provided with the dataset. The results show an average Dice score, Jaccard score, and Hausdorff distance of 0.866, 0.776, and 33.29mm, respectively, for the segmentation of the heart's chambers, aorta, and blood vessels. The results and the ground truths were compared using Bland-Altmon plots. The heart was correctly segmented from the CT images using the proposed method. Further this segmentation technique can be used to develop AI based solutions for segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.