Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) is the main auxiliary diagnostic tool for liver diseases. Liver segmentation and registration in all stages of DCE-CT images are the key technology for big data analysis of liver disease diagnosis. The change of imaging conditions in different stages of DCE-CT brings enormous challenges to the segmentation of liver CT images. This study proposes an automatic model for liver segmentation from abdominal CT images in different stages of DCE on the basis of U-Net. The skip connection in U-Net can improve the ability of complex feature recognition. A total of 4863 CT slices from 16 patients with hepatocellular carcinoma (HCC) were selected as the training set, and 1754 CT slices from 6 patients with HCC were selected as the test set. The training and test sets included plain scan, hepatic arterial-dominant phase, and portal venous-dominant phase CT scans. Results showed that the Dice value of the proposed method was significantly higher than those of the full convolutional network and region-growing method. Then, 3D reconstruction and registration were performed on the segmentation results of the liver region of DCE-CT images. The proposed method obtained the best performance, which can provide technical support for the big data analysis of liver diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.