Abstract

BackgroundAging is characterized by a gradual breakdown of cellular structures. Nuclear abnormality is a hallmark of progeria in human. Analysis of age-dependent nuclear morphological changes in Caenorhabditis elegans is of great value to aging research, and this calls for an automatic image processing method that is suitable for both normal and abnormal structures.ResultsOur image processing method consists of nuclear segmentation, feature extraction and classification. First, taking up the challenges of defining individual nuclei with fuzzy boundaries or in a clump, we developed an accurate nuclear segmentation method using fused two-channel images with seed-based cluster splitting and k-means algorithm, and achieved a high precision against the manual segmentation results. Next, we extracted three groups of nuclear features, among which five features were selected by minimum Redundancy Maximum Relevance (mRMR) for classifiers. After comparing the classification performances of several popular techniques, we identified that Random Forest, which achieved a mean class accuracy (MCA) of 98.69%, was the best classifier for our data set. Lastly, we demonstrated the method with two quantitative analyses of C. elegans nuclei, which led to the discovery of two possible longevity indicators.ConclusionsWe produced an automatic image processing method for two-channel C. elegans nucleus-labeled fluorescence images. It frees biologists from segmenting and classifying the nuclei manually.

Highlights

  • Aging is characterized by a gradual breakdown of cellular structures

  • Nuclear segmentation To evaluate the segmentation performance, some nuclei are segmented by biologists manually, which is denoted as G

  • We evaluate the performance by calculating true-positive area (TP), false-positive area (FP) and falsenegative area (FN) as follow: TP = AG ∩ AS

Read more

Summary

Introduction

Aging is characterized by a gradual breakdown of cellular structures. Nuclear abnormality is a hallmark of progeria in human. Analysis of age-dependent nuclear morphological changes in Caenorhabditis elegans is of great value to aging research, and this calls for an automatic image processing method that is suitable for both normal and abnormal structures. Several important studies have found age-related morphological alterations in C. elegans nucleus, such as changes of nuclear shape and the loss of peripheral heterochromatin [4]. To assess characteristics of nuclear morphology during the aging process, biologists usually manually identify the nuclei from images, subjectively estimate the type of the nuclei and evaluate the nuclear morphology according to experience. This process lacks consistent standards and high efficiency. An effective and automatic processing method for C. elegans fluorescence images is needed for nuclear morphological analysis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.